**2969**. [2004:368,371] Proposed by Vasile Cîrtoaje, University of Ploiesti, Romania.

Let a, b, c, d, and r be positive real numbers such that  $r = \sqrt[4]{abcd} \ge 1$ . Prove that

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} + \frac{1}{(1+c)^2} + \frac{1}{(1+d)^2} \ge \frac{4}{(1+r)^2}.$$

Solution by Arkady Alt, San Jose, CA, USA.

I suggest the following generalization. For any natural  $n \geq 2$ , let  $a_1, a_2, \ldots, a_n > 0$  such that  $a_1 a_2 \cdots a_n = r^n$ . Then

$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + \dots + \frac{1}{(1+a_n)^2} \ge \frac{n}{(1+\sqrt[n]{a_1a_2\cdots a_n})^2}$$

if and only if  $r \ge \sqrt{n} - 1$ .

[ $\mathit{Ed.}$ : In fact, the condition is not sufficient when n=2. It is possible to find  $\varepsilon>0$  such that  $a_1=\sqrt{2}-1$ ,  $a_2=a_1+\varepsilon$ , and  $r>\sqrt{2}-1$ , but the inequality fails. The slightly stronger condition  $r\geq 0.5$  is sufficient when n=2. Moreover, the inductive step still holds for n=2 using this stronger condition. That is, for n>2,  $r\geq \sqrt{n}-1$  is sufficient for the inequality to hold. The editor has not determined the minimum sufficient value of r in the case n=2.

We begin with necessity. From the supposition that the inequality holds for all  $a_1, a_2, \ldots, a_n > 0$  with  $a_1 a_2 \cdots a_n = r^n$ , and by setting  $a_1 = a_2 = \cdots = a_{n-1} = m$ ,  $a_n = \frac{r^n}{m^{n-1}}$ , for  $m \in \mathbb{R}^+$ , we obtain

$$rac{n-1}{(1+m)^2} + rac{m^{2(n-1)}}{\left(m^{n-1} + r^n
ight)^2} \, \geq \, rac{n}{(1+r)^2} \, ,$$

which holds for all positive m. Thus,

$$\lim_{m \to \infty} \left( \frac{n-1}{(1+m)^2} + \frac{m^{2(n-1)}}{(m^{n-1} + r^n)^2} \right) = 1 \ge \frac{n}{(1+r)^2},$$

which implies  $r \geq \sqrt{n} - 1$ .

We prove sufficiency by mathematical induction on  $n \geq 2$ .

Let n=2 and a, b>0 such that  $ab=r^2$  with  $r\geq 0.5$ .

Set x = a + b. Then  $x \ge 2r$ . Since

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} \; = \; \frac{2+2(a+b)+(a+b)^2-2ab}{(1+a+b+ab)^2} \, ,$$

the inequality can rewritten in the form:

This inequality holds if and only if

$$\begin{array}{ll} 0 & \leq & (1+r)^2 \left(2+2x+x^2-2r^2\right)-2 \left(1+x+r^2\right)^2 \\ & = & x^2 \left((1+r)^2-2\right)-2x \left(2 \left(1+r^2\right)-(1+r)^2\right) \\ & & + \left(2-2r^2\right) \left(1+r\right)^2-2 \left(1+r^2\right)^2 \\ & = & x^2 \left(r^2+2r-1\right)-2x \left(r^2-2r+1\right)-4r^4-4r^3-4r^2+4r \\ & = & \left(x-2r\right) \left(x \left(r^2+2r-1\right)+2 \left(r^3+r^2+r-1\right)\right) \; . \end{array}$$

Since  $r^2+2r-1\geq 0$  (this follows from  $r\geq \sqrt{2}-1$ ) and  $x\geq 2r$ , we have

$$\begin{array}{l} x\left(r^2+2r-1\right)+2\left(r^3+r^2+r-1\right) \\ \geq & 2r\left(r^2+2r-1\right)+2r^3+2r^2+2r-2 \\ = & 2\left(2r^3+3r^2-1\right) \ = \ 2(r+1)^2(2r-1) \ > \ 0 \ . \end{array}$$

Thus,

$$(x-2r)(x(r^2+2r-1)+2(r^3+r^2+r-1)) \ge 0$$
.

Let  $a_1, a_2, \ldots, a_n, a_{n+1} > 0$  and  $a_1 a_2 \cdots a_{n+1} = r^{n+1}$ , where  $r \geq \sqrt{n+1}-1$ . Due to symmetry of the inequality, we can suppose that  $a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} > 0$ .

Set 
$$x=\sqrt[n]{a_1a_2\cdots a_n}$$
; then  $a_{n+1}=\frac{r^{n+1}}{x^n}$ . Since

$$x \geq a_{n+1} \iff x^{n+1} \geq r^{n+1} \iff x \geq r$$

we have x > r.

Given  $x \ge \sqrt{n+1} - 1 > \sqrt{n} - 1$  and the induction hypothesis, we obtain the inequality:

$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + \dots + \frac{1}{(1+a_n)^2} \ge \frac{n}{(1+x)^2}.$$

[ Ed.: Note that, for n=2, we have  $x \ge \sqrt{3}-1 > 0.5$ ; hence, the inequality does indeed hold. For n>2,  $x>\sqrt{n}-1$ .]

Therefore,

$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + \dots + \frac{1}{(1+a_n)^2} + \frac{1}{(1+a_{n+1})^2}$$

$$\geq \frac{n}{(1+x)^2} + \frac{x^{2n}}{(x^n + r^{n+1})^2},$$

and it is enough to prove that, for all  $x \ge r \ge \sqrt{n+1} - 1$ ,

$$\frac{n}{(1+x)^2} + \frac{x^{2n}}{\left(x^n + r^{n+1}\right)^2} \ge \frac{n+1}{(1+r)^2}.$$

Let 
$$h(x)=rac{n}{(1+x)^2}+rac{x^{2n}}{(x^n+r^{n+1})^2}$$
. Then 
$$h'(x) \ = \ rac{2n\left(x^{n+1}-r^{n+1}
ight)\left(x^{n+1}r^{n+1}+3x^nr^{n+1}+r^{2n+2}-x^{2n-1}
ight)}{\left(1+x
ight)^3\left(x^n+r^{n+1}
ight)^3} \ .$$

Now everything depends on the behaviour of the polynomial

$$P_n(x) = x^{n+1}r^{n+1} + 3x^nr^{n+1} + r^{2n+2} - x^{2n-1}$$
.

Note that

$$x^{n+1}r^{n+1} + 3x^nr^{n+1} + r^{2n+2} - x^{2n-1} = 0$$
  
or  $r^{n+1} + \frac{3r^{n+1}}{x} + \frac{r^{2n+2}}{x^{n+1}} - x^{n-2} = 0$ .

Set 
$$\phi(x)=r^{n+1}+\frac{3r^{n+1}}{x}+\frac{r^{2n+2}}{x^{n+1}}-x^{n-2}.$$
 Since  $r\geq \sqrt{n+1}-1>\frac{1}{2}$  for  $n\geq 2$ , we have

$$P_n(r) = 2r^{2n+2} + 3r^{2n+1} - r^{2n-1}$$

$$= r^{2n-1} (2r^3 + 3r^2 - 1)$$

$$= r^{2n-1} (r+1)^2 (2r-1) > 0$$

$$\Rightarrow \phi(r) > 0.$$

Since  $\phi(x)$  is continuous on  $(0,\infty)$ ,  $\phi(x)$  strictly decreases on  $[r,\infty)$ , and  $\phi(\infty)\phi(r)<0$ , there is only one point,  $x_0$ , in  $(r,\infty)$  such that  $\phi(x_0)=0$ , or equivalently  $P_n(x_0)=0$ .

Moreover,  $\phi(x)>\phi(x_0)=0$  is equivalent to  $P_n(x)>0$  for all  $x\in [r,x_0)$ , and  $0=\phi(x_0)>\phi(x)$  is equivalent to  $P_n(x)<0$  for all  $x\in (x_0,\infty)$ .

Since

$$\min_{x \in [r,x_0]} h(x) = h(r) = \frac{n}{(1+r)^2} + \frac{r^{2n}}{(r^n + r^{n+1})^2} = \frac{n+1}{(1+r)^2},$$

and, for any  $x \in [x_0, \infty)$ ,

$$h(x) > \lim_{x \to \infty} h(x) = 1 \ge \frac{n+1}{(1+r)^2} = h(r),$$

we obtain

$$\min_{x \in [r,\infty)} h(x) = h(r) = \frac{n+1}{(1+r)^2}.$$

Also solved by ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MIHÁLY BENCZE, Brasov, Romania; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; and the proposer.